一个三位数的自然数P满足,除以11余4,除以7余3,除以3余2,则符合条件的自然数P有多少个?
【解析】:满足除以11余4的数,可以表示为11n+4,从小到大依次为:4,15, 26,37,48,59,70,……,然后再去看第二个条件是除以7余3,所以在这些数当中满足条件的最小的数是59,则同时满足除以11余4,除以7余3的数可以表示为77n+59(77为7和11的最小公倍数),将满足条件的数从小到大罗列依次为:59,136,213,290, 367,……,然后再看第三个条件需满足除以3余2,所以满足条件的最小的数是59,则同时满足三个条件的数可以表示为231n+59(231为3、7、11的最小公倍数),则符合条件的三位数为:290(n=1时),521(n=2时),752(n=3时),983(n=4时),所以符合条件的自然数P共有4个。