一块三角形农田ABC(如下图所示)被DE、EF两条道路分为三块。已知BD=2AD,CE=2AE,CF=2BF,则三角形ADE、三角形CEF和四边形BDEF的面积之比为:( )
A.1:3:3 B.1:3:4 C.1:4:4 D.1:4:5 【答案】C
【解析】第一步,本题考查几何问题,属于几何特殊性质类。
第二步,由BD=2AD,CE=2AE,CF=2BF,则DE∥BC,EF∥AB,即四边形BDEF是平行四边形,可得BD=EF,DE=BF。△ADE、△EFC和△ABC相似,符合相似图形的尺寸扩大理论,
△EFC的边长是△ADE的2倍,面积是△ADE的22=4倍,则△ADE和△CEF的面积之比是1:4。由BD=2AD,可知AB=3AD,△ABC的边长是△ADE的3倍,面积是△ADE的32=9倍,
则三角形ADE、三角形CEF和四边形BDEF的面积之比为:1:4:4。
因此,选择C选项。